Исследование микробов и бактерий. Методы микроскопического исследования микроорганизмов Можно ли вырастить бактерии в домашних условиях

Получив достаточно информации о мире микроорганизмов, мне стало интересно на них посмотреть, и увидеть, на конкретных примерах, как они работают (Приложение 3 ).


Для этого я решила провести ряд экспериментов. Быстрее всего дождаться результата, оказалось, от деятельности дрожжей.

Полезное применение микроорганизмов на примере дрожжей.

Замесила две порции теста: одна порция дрожжевого, другая без добавления дрожжей и испекла булочки.

через 20 минут дрожжевое тесто стало подниматься, т.е. началась работа микроорганизмов, а обычное тесто осталось без изменения. Пирожки из дрожжевого теста получилась пышными, мягкими и вкусными, а булочки из теста без добавления дрожжей получились тяжелые и плоские.

Вывод: дрожжи вырабатывают углекислый газ, в результате этого тесто «растет» поднимается, становится пышным.

Наблюдение за молоком (опыт взят из моего прошлогоднего проекта!).

Я поставила два стакана с молоком в холодильник, и два стакана оставила на сутки на батарее (по одному стакану с пастеризованным и кипяченым молоком).

пастеризованное молоко на батарее скисло на второй день, на третий день скисло кипяченое молоко на батарее, затем на седьмой день скисло пастеризованное молоко в холодильнике, на девятый день скисло кипяченое молоко в холодильнике! (Таблица 1).

Приложение 3. Таблица 1

Наблюдение за молоком
(Опыт 2)

Вывод: бактерии гниения испортили молоко, а бактерии молочнокислого брожения превратили его в простоквашу, которую можно употреблять в пищу. В холодильнике дольше хранится кипяченое молоко, а быстрее скисает пастеризованное.

Я увидела, как действуют молочные микроорганизмы.

Получение сметаны из сливок.

Взяла сливки и поставила их в теплое место.

через день получила сметану, даже не взбивая.

Вывод: сливки быстро скисают в теплом месте в открытой емкости.

Таким образом, я убедилась, что «полезные» микроорганизмы помогают сделать многие продукты вкусными и полезными!

Определение микроорганизмов при наличии консервантов в питательной среде.


Я создала питательную среду для размножения бактерий (сварила «живой бульон» и бульон из куриного кубика «Knor», добавила в него сахар). Разлила по четырем пробиркам. Пробирки пометила цветом, и пронумеровала. Первую (синюю и красную) пробирку оставила чистой, а во вторую (синюю и красную) опустила палец. Все пробирки закрыла крышкой, и поставила в теплое место (Таблица 2 ).

Таблица 2

Определение микроорганизмов
при наличии консервантов в питательной среде
(Опыт 4)

Дата (период появления микро-организмов) Маркированная проба с питательной средой (описание)
1 2 1 2
Бульон «Knor» (синий) «Живой» бульон (синий) Бульон «Knor» (красный), палец «Живой» бульон (красный), палец
08.01.2017 – 10.01.2017
(2 дня)
помутнение бульона
08.01.2017 – 11.01.2017
(3 дня)
появился неприятный запах
08.01.2017 – 12.01.2017
(4 дня)
появилась пена появился незначительный осадок появились пятна плесени появился осадок
08.01.2017 – 13.01.2017
(4 дня)
- - пятна плесени увеличились в диаметре
08.01.2017 – 16.01.2017
(7 дней)
- количество осадка увеличилось пятна плесени продолжают расти увеличение осадка в два раза

через два дня жидкость в сосудах помутнела, через 3 дня стала издавать неприятный запах. Я обратила внимание на то, что на четвертый день во всех образцах с «живым» бульоном появился осадок, причем в образце с опущенным пальцем осадка оказалось больше.

В пробирках с бульоном из кубика изменения начали происходить на поверхностной пленке каждого из образцов, но в образце с опущенным пальцем на поверхности начала образовываться плесень.

Получается, что микроорганизмы присутствуют во всех четырех пробах, но в разном количестве (это еще раз подтверждает тот факт, что на наших руках обитают бактерии), однако в пробирках с опущенным пальцем процесс размножения микроорганизмов происходит в несколько раз быстрее.

После этого я взяла несколько капель жидкости из пробирок и попыталась рассмотреть их под микроскопом, насколько это оказалось возможным. В образцах с «живым» и «неживым» бульоном были обнаружены разные виды микроорганизмов.

Вывод: во всех образцах подтвердился факт наличия в жидкости микроорганизмов. Странным мне показался факт размножения микроорганизмов в среде с консервантом. Ведь считается, что в таких условиях микроорганизмы не должны выживать, консервант их должен убивать. Объяснить такое поведение микроорганизмов я могу лишь истечением срока годности бульонного кубика, ведь врачи не рекомендуют употреблять продукты питания после истечения срока годности!

Определение благоприятных условий для развития и размножения бактерий.

Взяла два кусочка хлеба и поместила их в плотно закрытые полиэтиленовые пакеты. Один положила в холодильник, другой – в теплое место, на подоконник, где всегда солнышко.

через три дня я заметила, что на пакете, с опытным образцом, который находился в тепле, выступили капли воды, а еще через день стали образовываться пятна плесени (Таблица 3 ).

Таблица 3

Наблюдение за хлебом
(Опыт 5)

Вывод: на корочке хлеба появилась плесень – мукор . Микроорганизмы вызывают порчу продуктов! Плесень может развиваться только в теплом и влажном месте, особенно богатом питательными веществами, а сухость воздуха и низкая температура являются главными препятствиями для развития плесени.

Следовательно, с большой долей вероятности можно предположить, что и «плохие» микроорганизмы предпочитают развиваться в теплой влажной среде.

Наличие микроорганизмов на немытых и мытых руках.

В две чистые чашки положила питательную среду: вымытый клубень картофеля очистила, разрезала пополам, и вымочила 2-3 ч. в растворе соды (1 ч.л./500 мл. воды), затем сварила его и разрезала на лом-тики. Прикоснулась немытыми руками к одному пласту картофеля, а затем мытыми к другому. Закрыла чашки крышками, и поставила в темное теплое место на 4 дня.

через четыре дня на ломтике картофеля, к которому прикасалась грязными руками, вы-росли бактерии (Таблица 4 ).

Таблица 4

Наличие микроорганизмов на немытых и мытых руках
(Опыт 6)

пробы Наименование исследуемого объекта 1 день (02.01.2017) 3 день (04.01.2017) 5 день (06.01.2017)
1 Ломтик картофеля (чистые руки) - при взаимодействии пигмента с щелочью (мыло) образуется оранжево-желтая окраска, поэтому на данном образце появился налет желтого цвета, а красного пигмента не обнаружено -
2 Ломтик картофеля (грязные руки) - появились пятна желто-оранжевого цвета (кокки), и красный пигмент характерный для крахмалсодержащих продуктов продигиозин , который вырабатывают бактерии «чудесной крови», не патогенны, но продукты их жизнедеятельности являются токсичными пятна плесени стали крупнее и ярче

Вывод: микроорганизмы не любят чистоту, мыло их убивает!

Наличие микроорганизмов на предметах.

Взяла ватной палочкой пробу с перил лестничной клетки своего подъезда. Образец поместила в пробирку с питательной средой («живой» бульон), и убрала в теплое, темное место.

через один день произошло изменение цвета, что говорит о присутствии вредных бактерий, а через три дня выпал белый творожистый осадок - колонии бактерий (Таблица 5 ).

Таблица 5

Наличие микроорганизмов на предметах
(Опыт 7)

Вывод: на предметах вокруг нас очень много различных микроорганизмов, не всегда полезных, поэтому необходимо мыть руки!

Проделанные опыты подтверждают факт существования вокруг нас огромного количества различных микроорганизмов, которые, к сожалению, не всегда бывают «хорошими».

Медицинская микробиология

Микробиология - это раздел биологии, занимающийся изучением микроорганизмов, главным образом вирусов, бактерий, грибов (в особенности дрожжей), одноклеточных

Многие микробы патогенны для человека, животных и растений и являются причиной разнообразных заболеваний. Медицинская микробиология изучает пути распространения инфекции, чувствительность возбудителей инфекционных болезней к антибиотикам и механизмы их патогенного действия. В клинических лабораториях при обследовании больных обычно проводят высевание и культивирование патогенных микробов, чтобы их затем идентифицировать и подобрать эффективное лечение. Другое прикладное направление -промышленная микробиология (получение антибиотиков, использование микроорганизмов при обработке пищевых продуктов, предохранение материалов от порчи и разложения, облагораживание почвы, извлечение металлов из руд и промышленных отходов, разработка способов получения белка из нефти). Наконец, сельскохозяйственная микробиология специализируется на повышении плодородия почвы и предупреждении болезней сельскохозяйственных животных.

Метаболическая активность микроорганизмов очень высока: они осуществляют Фиксацию азота воздуха и тем самым повышают плодородие почвы; вносят основной вклад в фотосинтетическую продуктивность Мирового океана; разрушают органические отходы и продукты жизнедеятельности человека, обеспечивая их рециклизацию. Бактериологическая лаборатория и бактериологическое иссследование

Бактериологическая лаборатория - подразделение, выполняющее микробиологические исследования. Существуют клинические, санитарно-бактериологические, контрольные, ветеринарные, сельскохозяйственные, пищевые и другие бактериологические лаборатории.

Бактериологическое исследование - совокупность методов, применяемых для обнаружения и установления природы бактерий, выделенных от больных, бактерионосителей или из объектов окружающей среды. Бактериологическое исследование проводят с диагностической целью при инфекционных болезнях, а также при обследовании на бактерионосительство и определении санитарно-гигиенического состояния объектов окружающей среды.

Выбор материала для бактериологического исследования определяется целью исследования, биологическими свойствами микробов, условиями обитания их в исследуемом объекте, патогенезом заболевания (с учетом места наибольшей концентрации возбудителя и путей его выведения из организма). Так, при сепсисе или болезни, сопровождающейся бактериемией (например, при брюшном тифе), для обнаружения возбудителя берут кровь, при дизентерии - испражнения, при пневмонии - мокроту, при подозрении на анаэробную инфекцию - материал из глубоких слоев тканей и т. д. Успех бактериологического исследования в значительной степени зависит от правильности взятия материала и соблюдения определенной осторожности при его транспортировке. У больного материал для исследования рекомендуется брать до начала лечения химиотерапевтическими препаратами. Исследуемый материал собирают в стерильную посуду, соблюдая правила асептики, и в возможно короткие сроки доставляют в бактериологическую лабораторию. Транспортировку инфицированного материала производят в закрытой посуде, помещенной в специальные биксы, пеналы, чемоданы и т. д. К материалу, посылаемому для бактериологического исследования, прилагают сопроводительный документ, включающий следующие сведения: характер направляемого материала и дату его взятия, фамилию, имя, отчество, возраст и адрес больного, дату начала заболевания, предполагаемый клин, диагноз. Доставленный в лабораторию материал необходимо как можно быстрее исследовать.

Бактериологическое исследование материала начинается с его бактериоскопии. Исследование под микроскопом окрашенных мазков (бактериоскопический метод) позволяет в некоторых случаях идентифицировать возбудителя заболевания (например, микобактерии туберкулеза, гонококки). Однако возможности этого метода ограничены и его обычно используют как ориентировочный.

Основным методом бактериологического исследования является бактериологический метод, который заключается в выделении чистой культуры возбудителя (популяции, содержащей бактерии одного вида) и ее идентификации. Под идентификацией микроорганизмов подразумевают изучение их свойств с целью установления принадлежности к той или иной систематической группе (роду, виду). Бактериологический метод представляет собой многоэтапное исследование. В связи с тем, что исследуемый материал чаще на 18-24 ч. Посевы анаэробов помещают в анаэростат, откуда удаляют воздух и заменяют его газовой смесью без кислорода. 0 37°всего содержит смесь микроорганизмов, основой бактериологического метода является выделение чистой культуры возбудителя, которое производят на первом этапе исследования. С этой целью делают посев исследуемого материала, как правило, на плотные питательные среды, выбор которых обусловливается свойствами предполагаемого возбудителя. Применяют по возможности элективные среды, на которых растет только данный вид бактерий, или дифференциально-диагностические среды, позволяющие отличить предполагаемого возбудителя от других микроорганизмов. Например, для выделения дифтерийной палочки используют теллуритовые среды, при бактериологической диагностике кишечных инфекций - среду Эндо, висмут-сульфитный агар и т. д. При выделении условно-патогенных микроорганизмов посев материала производят на универсальные питательные среды, например кровяной агар. Все манипуляции, связанные с посевом и выделением бактериальных культур, осуществляют над пламенем горелки. Посев материала на питательные среды производят либо бактериальной петлей, либо стеклянным или металлическим шпателем таким образом, чтобы рассеять находящиеся в исследуемом материале бактерии по поверхности питательной среды, в результате чего каждая бактериальная клетка попадает на свой участок среды. При выделении чистой культуры возбудителя из патологического материала, в значительной мере загрязненного посторонней микрофлорой, иногда пользуются биологическим методом выделения чистой культуры: исследуемым материалом заражают чувствительных к возбудителю лабораторных животных. Так, при исследовании мокроты больного на содержание в ней пневмококков мокроту внутрибрюшинно вводят белым мышам и через 4-6 ч из их крови получают чистую культуру пневмококка. В том случае, если в исследуемом материале предполагается содержание малого количества возбудителя, для его накопления посев производят на жидкую питательную среду - среду обогащения (оптимальную для данного микроорганизма). Затем из жидкой питательной среды осуществляют пересев на плотные среды, разлитые в чашках Петри. Засеянную среду помещают в термостат обычно при 1

На втором этапе проводят исследование колоний бактерий, происходящих от одной бактериальной клетки и выросших на плотной питательной среде (колония и является чистой культурой возбудителя). Производят макроскопическое и микроскопическое исследование колоний в проходящем и отраженном свете, невооруженным глазом, с помощью лупы, под малым увеличением микроскопа. Отмечают культуральные свойства колоний: их величину, форму, цвет, характер краев и поверхности, консистенцию, структуру. Далее часть каждой из намеченных колоний используют для приготовления мазков, окрашивают мазки по Граму, микроскопируют, определяя морфологические и тинкториальные (отношение к окраске) свойства выделенной культуры и одновременно проверяя ее чистоту. Оставшуюся часть колонии пересевают в пробирки со скошенным агаром (или другой оптимальной для данного вида средой) с целью накопления чистой культуры для более полного ее изучения. Пробирки помещают на 18-24 ч в термостат. Кроме перечисленных исследований на втором этапе нередко подсчитывают количество выросших колоний. Особенно большое значение это имеет при заболеваниях, вызванных условно-патогенными микроорганизмами, так как в этих случаях судить о ведущей роли того или иного возбудителя можно лишь по содержанию его в патологическом материале в большом количестве и преобладанию над другой Флорой. Для проведения такого исследования готовят последовательные разведения исследуемого материала, из которых производят высев на чашки с питательной средой, подсчитывают число выросших колоний, умножают на разведение и таким образом определяют содержание микробов в материале.

Третий этап заключается в идентификации выделенной чистой культуры возбудителя и определении его чувствительности к антибиотикам и другим химиотерапевтическим препаратам. Идентификацию выделенной бактериальной культуры осуществляют по морфологическим, тинкториальным, культуральным, биохимическим, антигенным, токсигенным свойствам. Прежде всего делают мазок из культуры, выросшей на скошенном агаре, изучают морфологию бактерий и проверяют чистоту культуры бактерий. Затем производят посев выделенной чистой культуры бактерий на среды Гисса, желатин и другие среды для определения биохимических свойств. Биохимические, или ферментативные, свойства бактерий обусловлены ферментами, участвующими в расщеплении углеводов, белков, вызывающими окисление и восстановление различных субстратов. Причем каждый вид бактерий продуцирует постоянный для него набор Ферментов. При изучении антигенных свойств чаще всего используют реакцию агглютинации на стекле. Токсинообразование микробов определяют с помощью реакции нейтрализации токсина антитоксином in vitro или in vivo. В некоторых случаях изучают и другие Факторы вирулентности. Перечисленные исследования позволяютопределить вид или род возбудителя.

С целью выявления эпидемической цепочки заболевания, в том числе для обнаружения источника инфекции, осуществляют внутривидовую идентификацию бактерий, которая заключается в определении фаготипа (Фаговара), изучении антигенных и других свойств выделенных бактерий. Определение фаготипа - фаготипирование производят при стафилококковой инфекции, брюшном тифе, паратифе В. На чашку с питательной средой, засеянную с помощью шпателя (газоном) выделенной чистой культурой, наносят по капле различные диагностические фаги. Если культура чувствительна к данному фагу, наблюдается образование округлой формы участков разрушенных бактерий - так называемые бактериологического исследования негативные колонии (бляшки). Культура возбудителя может быть чувствительна к одному или нескольким фагам.

Для назначения рациональной химиотерапии в связи с широким распространением лекарственно-устойчивых форм бактерий необходимо определение антибиотикограммы -чувствительности или устойчивости выделенной чистой культуры возбудителя к химиотерапевтическим препаратам. С этой целью используют либо метод бумажных дисков, либо более точный, но громоздкий метод серийных разведений. Метод бумажных дисков основан на выявлении зоны подавления роста бактерий вокруг дисков, пропитанных антибиотиками. При применении метода серийных разведений антибиотик разводят в пробирках с жидкой питательной средой и засевают в них одинаковое количество бактер бактериологического исследования. Учет результатов проводят по отсутствию или наличию роста бактерий. Полученная антибиотикограмма может служить и эпидемиологическим целям для определения идентичности штаммов.

При выявлении бактерионосительства проводят повторные исследования, т. к. в одной порции материала можно не обнаружить возбудителя.

В настоящее время существуют ускоренные методы идентификации бактерий. Так, в нашей стране применяют СИБ (систему индикаторных бумажек), позволяющую быстро (через 6-12 ч.) и без использования большого числа питательных сред идентифицировать чистую бактериальную культуру. Для экспресс-диагностики инфекционных болезней широко используют иммунофлюоресцентный метод (см. Серологические исследования).

Из книги 1000 секретов женского здоровья автора Дениз Фоули

ГЛАВА 42 МЕДИЦИНСКАЯ ПОМОЩЬ Кто кроме вашего любимого так же хорошо знает ваше тело, как ваш врач? Кто еще видит вас в откровенных позах, полуобнаженной, в жару, страдающей от боли? Такие отношения, по меньшей мере, необычны для посторонних людей. И вы доверяете этому

Из книги Лечимся пиявками автора Нина Анатольевна Башкирцева

Медицинская пиявка Медицинская пиявка – это особая, породистая пиявка, резко отличающаяся от прудовой. Она выращивается именно для того, чтобы всего один раз послужить человеку. Пиявка используется как одноразовый шприц, который абсолютно стерилен. После процедуры

Из книги Я был бы счастлив, если бы не... Избавление от любого рода зависимостей автора Олег Фрейдман

Медицинская модель При этой форме лечения используют медикаментозные препараты (для химически зависимых наркоманов и алкоголиков к ним же относятся и различные варианты химических защит).В такой модели можно достичь стойкой ремиссии в течение некоторого времени, но

Из книги История медицины автора Е. В. Бачило

1. Медицинская символика, и ее значение История медицины – это наука о развитии, совершенствовании медицинских знаний, медицинской деятельности разных народов мира на протяжении всей истории человечества, которая находится в неразрывной связи с философией, историей,

Из книги Латинский язык для медиков автора А. И. Штунь

3. Медицинская терминология Современная медицинская терминология – это система систем, или макротерминосистема. Вся совокупность медицинских и парамедицинских терминов, как отмечалось, достигает нескольких сотен тысяч. План содержания медицинской терминологии очень

Из книги Медицинская физика автора Вера Александровна Подколзина

Из книги Скорая помощь. Руководство для фельдшеров и медсестер автора Аркадий Львович Верткин

Из книги Очищение. Том 1. Организм. Психика. Тело. Сознание автора Александр Александрович Шевцов

Из книги Чистотел и алоэ. Чудо-целители семьи автора Галина Анатольевна Гальперина

Слой 1. ПСИХИКА МЕДИЦИНСКАЯ Глава 1. Организм + психика = человек? Человек - это не организм. У человека есть тело, есть сознание и есть душа. Но если мы начинаем смотреть на себя физиологически, то душа пропадает, а появляется организм. Однако даже физиологи понимают, что

Из книги Военно-полевая хирургия автора Сергей Анатольевич Жидков

Медицинская и декоративная косметика Существует медицинская и декоративная косметика.Медицинская косметика предполагает использование различных косметических средств, проведение физиотерапевтических, хирургических и других методов лечения с целью профилактики и

Из книги Победа разума над медициной. Революционная методика оздоровления без лекарств автора Лисса Рэнкин

Первая медицинская помощь Первая медицинская помощь оказывается на поле боя или в очаге массовых санитарных потерь в виде само- или взаимопомощи, а также санинструкторами и санитарами-стрелками. Но время локальных конфликтов она может оказываться фельдшером и даже

Из книги Художники в зеркале медицины автора Антон Ноймайр

Медицинская ворожба После того как на уровне подсознания вы сменили верования, мы оптимизируем культуральную среду для клеток, из которых состоит ваше тело, и таким образом меняем способы экспрессирования ДНК. Мы не жертвы собственных генов. Мы властители своей

Из книги Ребенок и уход за ним автора Бенджамин Спок

Из книги Умный пациент. Как выйти здоровым из больницы автора Вячеслав Архипов

Медицинская помощь 47. Родильный дом.В наше время преобладающее большинство женщин рожает в родильных домах, где всегда рядом опытные врачи, сестры, няни. В родильном доме имеется все необходимое оборудование, включая такие сложнейшие приспособления, как инкубаторы,

Из книги Пиявки: домашняя гирудотерапия автора Геннадий Михайлович Кибардин

10 ВАША МЕДИЦИНСКАЯ КОМАНДА Пациенту, для того чтобы включиться в процесс оказания ему медицинской помощи, необходимо знать, с кем он имеет дело, кто эту помощь ему оказывает. Большинство больных, пребывающих в патерналистской модели взаимоотношений с медицинскими

Из книги автора

Медицинская пиявка Пиявка существует уже миллионы лет, судя по всему, она ровесница многочисленных динозавров, заселявших нашу Землю и вымерших по неизвестной причине миллионы лет тому назад. За долгие годы эволюции пиявки совершенствовали одну свою важную функцию –

Для изучения микробов необходимы соответствующие лабораторная обстановка и оборудование. Помещение для лабораторий подбирают просторное, светлое, чистое и изолированное. Работа в лаборатории требует особой осторожности, так как приходится работать с заразным материалом. Микроскопирование. Вследствие очень малых размеров микроорганизмы изучают с помощью специальной аппаратуры - микроскопов.

Микроскоп состоит из двух частей: механической и оптической. Механическая часть микроскопа состоит из штатива, тубyca 7 (рис. 6), «револьвера» 2, предметного столика 4, микрометрического 10 и макрометрического 11 винтов. К оптической части относятся объективы 3, окуляры, зеркала 6, осветительный аппарат 5 (конденсор). Оптическая часть - наиболее важная часть микроскопа. Под предметным стеклом находятся зеркало и конденсоры. Зеркало служит для отражения (???) направления световых лучей через конденсор в объектив. Конденсор состоит из нескольких линз, которые собирают отраженные от зеркала лучи на уровне исследуемого предмета. На нижней поверхности осветительного прибора укреплена ирис-диафрагма, с помощью которой можно уменьшать или увеличивать освещение изучаемого предмета. Объектив состоит из нескольких линз, заключенных в общую металлическую оправу, на которую наносится цифра, указывающая увеличение. Окуляр состоит из двух линз и дает увеличение изображения, которое получается (???) от объектива. На окуляре также имеется цифра, указывающая увеличение. Общее увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра.
Разрешающая способность микроскопа ограничивается длиной световой волны.

Имеются микроскопы более усовершенствованных конструкций. Так, в бинокулярных микроскопах предметы рассматриваются обоими глазами, благодаря чему получается более рельефное изображение объектов. Сконструированы ультрамикроскопы, предназначенные для рассматривания объектов, имеющих размеры менее 0,2 мк. Предметы в этих микроскопах освещают не проходящими лучами, как в обычном микроскопе, а боковыми, исходящими от сильного источника света.

Электронный микроскоп, дающий увеличение от 20 000 до 200 000 раз и более, был изобретен в 1932 году. При его помощи можно изучать такие микроорганизмы, как вирусы, имеющие размеры в несколько миллимикрон. В этих микроскопах через изучаемый предмет пропускается поток быстролетящих электронов, причем изображение получается на специальном экране.
В последние годы, кроме описанных выше, стали внедряться практику также люминесцентные фазово-контрастные микроскопы, применение которых расширило возможности изучения микроорганизмов. Так, при люминесцентной микроскопии изучаемый предмет освещается ультрафиолетовыми лучами от специального источника. При этом некоторые микробы, поглощающие энергию, могут затем давать видимое цветное (зеленое, желтое, фиолетовое) излучение. Таким образом, в отличие от обычной микроскопии в люминесцентном микроскопе рассматривают объекты в излучаемом ими свете. В фазово-контрастном микроскопе более четко изучается внутренняя структура живых клеток в процессе жизнедеятельности и функция движений. Это достигается с помощью специально устроенных фазовых (кольцевых) объективов и конденсора. Они изменяют фазу волны проходящего света, резко повышая контрастность изображения. Питательные среды. Для исследования разнообразных свойств микробов их выращивают на питательных средах. Чтобы микробы могли размножаться, такая среда должна содержать достаточное количество питательных веществ, воду, минеральные соли и источники азота и углерода. Особое внимание обращают на то, чтобы среда для выращивания микробов была стерильной, так как загрязнение питательной среды делает ее непригодной для использования.

Различают естественные и искусственные питательные среды. В качестве естественных питательных сред применяют молоко, желчь, картофель, морковь, яйца и др. .Искусственные питательные среды готовят в основном из мясных или растительных настоев, добавляя в них различные азотистые продукты, углеводы и соли.

Подопытные животные. Роль отдельных микробов в возникновении заболеваний, изучение характера инфекционного процесса, метода лечения и профилактики многих инфекционных заболеваний были выяснены благодаря широкому использованию в микробиологии метода экспериментального заражения подопытных животных.

Из лабораторных животных в микробиологической практике наиболее широко используют морских свинок, кроликов, белых мышей, белых крыс, иногда - обезьян, мелкий и крупный рогатый скот, кошек, собак и редко птиц (голубей, кур). Выбор того или другого животного для исследования зависит от двух условий: во-первых, животное должно быть восприимчиво к данной инфекции, во-вторых, в естественных условиях у него не должно быть данной инфекции. Поэтому для изучения каждой инфекции используют отдельный вид животного. Например, при изучении туберкулеза и дифтерии подопытными являются морские свинки, при изучении бешенства - кролики и др.

Подвижность бактерий может обеспечиваться различным образом. У большинства активно передвигающихся, плавающих бактерий движение обусловлено вращением жгутиков. Двигаться без жгутиков способны скользящие бактерии (к которым относятся миксобактерии, цианобактерии и некоторые другие группы) и спирохеты. О механизмах их движения будет сказано при рассмотрении соответствующих групп бактерий. Расположение жгутиков.Расположение жгутиков у подвижных эубактерий - это признак, характерный для определенных групп, поэтому оно имеет таксономическое значение. У палочковидных бактерий жгутики могут прикрепляться полярноили латерально(рис. 2.34). Среди бактерий с монополярным жгутикованием лишь немногие снабжены только одним, но зато особенно толстым жгутиком - это монотрихи (Vibrio metschnikovii, рис. 2.35; Caulobacter sp.). У многих бактерий с монополярным и биполярным жгутикованием одиночный по виду жгутик в действительности представляет собой пучок из 2-50 жгутиков (политрихи). Монополярно-политрихальное расположение жгутиков называют также лофотрихальным(как у Pseudomonas, Chromatium), а биполярно-политрихальное - амфитрихальным (у Spirillum). У Selenomonas имеется один пучок жгутиков, прикрепленный сбоку (рис. 2.36,2>). При перитрихальномрасположении (как у Enterobacteriaceae, Bacillaceae и не которых других бактерий) жгутики располагаются по бокам клетки или на всей поверхности (рис. 2.36,4).


Выявление жгутиков.Рассмотреть жгутик (или пучок жгутиков) в проходящем свете или в условиях фазового контраста удается только у немногих бактерий, например у Chromatium okenii, Bdellovibrio,Thiospirillum (рис. 2.37). У многих других бактерий (Pseudomonas, Spirillum и др.) жгутик и зону его биения можно увидеть только в темном поле. Легче всего выявлять жгутики путем нанесения на них красителя или металла, а также с помощью электронного микроскопа. Функции жгутиков.У большинства бактерий с полярным расположением жгутиков последние действуют подобно корабельному винту и проталкивают клетку в окружающей жидкой среде. Жгутик представляет собой спирально извитую нить, приводимую во вращательное движение «мотором», находящимся в месте ее прикрепления в плазматической мембране. Для перемещения клетки может служить одиночный жгутик или пучок жгутиков. Жгутики вращаются сравнительно быстро; например, у спирилл они совершают около 3000 оборотов в минуту, что близко к скорости среднего электромотора. Вращение жгутиков приводит к тому, что тело клетки вращается примерно с 1/3 этой скорости в противоположном направлении. Жгутики могут спонтанно или в ответ на внешний стимул изменять направление вращения (рис. 2.34). У некоторых бактерий с полярным расположением жгутиков это приводит к тому, что клетка начинает двигаться вспять. Когда у Chromatium okenii в ответ на вспышку света направление вращения жгутиков меняется, пучок жгутиков превращается в тянущее приспособление; при этом назад клетка перемещается в четыре раза медленнее, чем вперед, и ее движение становится «кувыркающимся». У Thiospirillum jenense - гигантской фототрофной спириллы - единственный полярный пучок жгутиков при обратном движении бьется уже не впереди клетки: пространство биения жгутиков теперь охватывает клетку с боков: оно как бы вывернуто наизнанку (подобно вывернутому ветром зонту). У спирилл с амфитрихальным расположением жгутиков в таком положении находится, смотря по обстоятельствам, то один, то другой пучок. Перитрихально расположенные жгутики Escherichia coli работают как один хорошо скоординированный спиральный пучок и проталкивают клетку через среду. В тех случаях, когда направление вращения от­дельных жгутиков меняется, клетка начинает «кувыркаться». По-видимому, перитрихально расположенные жгутики не могут служить тянущим приспособлением. Бактерии, снабженные жгутиками, могут передвигаться очень быстро: Bacillus megaterium со скоростью 1,6 мм/мин, Vibrio cholerae - 12 мм/мин. Это соответствует примерно от 300 до 3000 длин тела в минуту. Тонкое строение жгутиков.Жгутики представляют собой спирально закрученные нити. У разных бактерий они различаются по своей толщине (12-18 нм), длине (до 20 мкм), а также по длине и амплитуде витка. Эти параметры характерны для каждого вида. У некоторых бактерий могут образовываться жгутики разных типов. Нити жгутиков состоят из специфического белка флагеллина. Они построены из субъединиц с относительно малой молекулярной массой. Субьединицы располагаются по спирали вокруг внутреннего свободного пространства (подобно белковым молекулам в вирусе табачной мозаики). Таким образом, структура жгутика определяется свойствами белковых субъединиц. Жгутик состоит из трех частей - описанной выше спиральной нити, «крюка» вблизи поверхности клетки и базального тельца. С помощью базального тельца жгутик закреплен в плазматической мембране и в клеточной стенке (рис. 2.38). Оно состоит из центрального стержня, на котором у грам-отрицательных бактерий находятся две пары колец. Наружная пара (кольца L и Р) расположены на уровне наружного и внутреннего слоев клеточной стенки, а внутренняя пара (кольца S и М) - на уровне наружного слоя плазматической мембраны. Так как у грам-положительных бактерий наружная пара колец отсутствует, полагают, что для вращения жгутиков необходима только внутренняя пара. Можно представить себе, что кольцо М действует как приводной диск, а кольцо S играет роль подшипника на внутренней поверхности пептидогликанового слоя. Молекулярный механизм вращательного «мотора» жгутика пока не выяснен.
О- и Н-аитигены.Proteus vulgaris часто распространяется по всей поверхности агара в виде тонкого серого налета (Н-форма, от нем. Hauch - налет). Такое «роение» объясняется большой подвижностью клеток. Некоторые штаммы налета не образуют (О-форма, от нем. ohne Hauch - без налета). Эти штаммы неподвижны, они лишены жгутиков. Отсюда ведет свое начало обычная терминология, принятая в бакте­риальной серодиагностике; антигены поверхности или вообще тела клетки (соматические) называют О-антигенами, а антигены жгутиков - Н-антигенами. Фимбрии и пили.Поверхность некоторых бактерий покрыта большим числом (от 10 до нескольких тысяч) длинных, тонких прямых нитей толщиной 3-25 нм и длиной до 12 мкм, называемых фимбриями или пилями. Они встречаются как у жгутиконосных видов, так и у форм, лишенных жгутиков. От них следует отличать половые пили, или пили типа F, которые были обнаружены у клеток - доноров Escherichia coli К 12, т.е. у штаммов, содержащих половой фактор F (F + , Hfr). Пили F встречаются только по одной или по две на клетку, они имеют вид полых белковых трубочек длиной от 0,5 до 10 мкм. Хемотаксис.Свободно передвигающиеся бактерии способны к таксисам - направленным движениям, определяемым внешними стимулами. В зависимости от факторов среды, вызывающих направленное движе­ние, говорят о хемотаксисе, аэротаксисе, фототаксисе и магнитотаксисе. Подвижные бактерии реагируют на химические раздражители - скапливаются в одних местах, а других мест избегают. Такая реакция свободно передвигающихся организмов называется хемотаксисом. Скопления бактерий образуются под действием химических факторов следующим образом (рис. 2.39). У форм с перитрихальными жгутиками возможны только два типа двигательного поведения: прямолинейное движение и кувыркание. Последнее прерывает прямолинейную пробежку и изменяет направление пути. Когда бактерия оказывается в среде с градиентом концентрации «привлекающего» ее субстрата (аттрактанта), ее прямолинейное движение длится многие секунды, если она плывет по направлению к оптимальной его концентрации; однако такое движение через несколько секунд прекратится, если бактерия плывет в противоположном направлении. Хотя направление прямолинейного движения после кувыркания оказывается совершенно случайным, тем не менее зависимость длительности такого движения от его направления приводит в конечном результате к накоплению бактерий в области оптимальной концентрации субстрата. За чувствительность к химическому стимулу и за реагирование на него ответственны хеморецепторы. В ряде случаев эти хеморецепторы действуют независимо от способности бактерий утилизировать данный субстрат. Например, некоторые мутанты продолжают совершенно нормально реагировать на определенное питательное вещество, хотя и потеряли способность его использовать.
Аэротаксис.У подвижных бактерий можно определить тип метаболизма (аэробный или анаэробный) по их аэротаксическим движениям и скоплению на определенных расстояниях от края покровного стекла. В слое бактерий, помещенных между предметным и покровным стеклами, аэрофильные бактерии скапливаются у края покровного стекла или в непосредственной близости от оказавшихся в препарате пузырьков воздуха; это указывает на их потребность в аэробных условиях и на то, что необходимую энергию они получают за счет дыхания (рис. 2.40). Строго анаэробные бактерии будут скапливаться в центре. Микроаэрофильные бактерии, например некоторые псевдомонады и спириллы, будут держаться на определенном расстоянии от края. С помощью бактерий, проявляющих положительный аэротаксис, Энгельману удалось продемонстри­ровать выделение кислорода локально освещаемыми хлоропластами зеленой водоросли Spirogyra.
Фототаксис. Фототрофным пурпурным бактериям для получения энергии необходим свет. Не удивительно поэтому, что в результате фототаксиса они скапливаются в освещенном месте. Если выдержать в темноте препарат, в котором плотная суспензия клеток Chromatium будет равномерно распределена под покровным стеклом, а затем направить на него сфокусированный пучок света, то бактерии сосредоточатся в области светового пятна. Клетки, попавшие в это пятно случайно в результате своего беспорядочного движения, уже не могут его покинуть. Как только они попадут в темную зону, направление движения жгутиков мгновенно меняется на обратное и клетки возвращаются в освещенное место. Изменение работы жгутиков происходит так быстро, что эта реакция получила название «реакция испуга» (фоботаксис). Впрочем, для того чтобы вызвать такой ответ, достаточно даже небольшого различия в освещенности двух участков. Мелкие клетки Chromatium скапливаются уже в таком месте, где освещенность всего на 0,7% выше, чем в окружающей области. Таким образом, по своей чувствительности к световому контрасту они приближаются к сетчатке человеческого глаза (для которой соответствующий порог равен 0,4%). Магиитотаксис. Из поверхностных слоев донного ила пресноводных водоемов, а также морей были выделены бактерии (палочки, спириллы, кокки), способные ориентироваться в магнитном поле и перемещаться в направлении линий магнитного поля. Они содержат много железа (0,4% сухого вещества) в форме ферромагнитной окиси железа (магнетита), которая находится в гранулах (магнитосомах), расположенных около мест прикрепления жгутиков. Бактерии, выделенные в северном полушарии, «ищут» север; здесь линии магнитного поля проходят под углом около 70° к горизонту вниз, вглубь водоема. Магнитотаксическоё поведение направляет бактерии в глубину ила, где очень мало или вовсе нет кислорода. Так как магнитотаксические бактерии - анаэробы или микроаэрофилы, их реакция на магнитное поле понятна с точки зрения экологии. Такие клетки, завезенные в южное полушарие, в массе своей, конечно, погибнут; выживут лишь немногие «неправильно» поляризованные клетки, которые могут затем размножиться. Полярность, очевидно, генетически не зафиксирована.

Различают следующие основные методы: микроскопический, микробиологический, экспери­ментальный, иммунологический.

1.Микроскопический - изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

    Микробиологический - (бактериологический, культурный) - посев материала на питатель­ные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура - скопление микробов одною вида, выращенных на питательной среде. Штамм - чистая культура, выделенная из кон­кретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон - генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в гене­тических экспериментах).

    Экспериментальный (биологический) - заражение микробами лабораторных животных. Метод позволяет:

    выделить чистую культуру микробов, плохо растущих на питательных средах;

    изучить болезнетворные свойства микроба;

    получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы - антитела (AT), способные вступать с данным ан­тигеном в специфическое взаимодействие с образование комплекса АГ+АТ. Метод основан па выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ (диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей ин­фекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентифи­кация по антигенной структуре).

Морфология и физиология микробов микроскопический метод исследования

Световой микроскоп с иммерсионной системой

Для изучения микробов в микроскопе требуется увеличение примерно в 1000 раз. Поэтому используется микроскопы с иммерсионной системой ("иммерсио" - погружение) В состав иммер­сионной системы входит иммерсионный объектив (х 90) и иммерсионное масло, которым заполняют разрыв между изучаемый предметом и передней линзой иммерсионного объектива. Поскольку по­казатели преломления стекла и масла близки, это позволяет избежать потери световых лучей вследствие их отклонения, и, тем самым, создать оптимальную освещённость поля зрения. Необ­ходимость в концентрации светового пучка обусловлена также и чрезвычайно малым диаметром передней линзы иммерсионного объектива. При микроскопировании необходимо помнить, что объективы "сухой системы" не предназначены для погружения в масло, которое может привести их в негодность. Микроскопия с иммерсионной системой позволяет изучать убитые микробы в ок­рашенном состоянии (их форму, размеры, взаимное расположение, строение бактериальной клет­ки) и дифференцировать одни микробы от других.

Способность микробов окрашиваться различными методами называют тинкториальными свойствами.

В некоторых случаях (изучение морфологии грибов, простейших, других относительно круп­ных объектов в живом неокрашенном состоянии) используется световой микроскоп с затемнённым полем зрения (объективы х 40 или х 8) Для микроскопии готовят препараты "раздавленная капля" или "висячая капля".

Измерение микробов.

Изучение морфологических признаков микробов (длина, ширина, форма) нередко проводят для определения их вида. Размеры клеточных микроорганизмов варьируют от долей микрометра (мкм, 10 -6 м) до нескольких десятков микрометров. Мелкие клетки бактерий имеют размеры 1-2, крупные от 8 до 12 мкм и более. Для измерений используют окуляр-микрометр (встроенную в оку­ляр прозрачную линейку).

Темнопольный микроскоп (ультрамикроскоп)

Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсатора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп имеет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть от­раженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнополъную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате "раздавленная капля".

Фазово-контрастный микроскоп

Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличие от окрашенных, амплитуда световых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участ­ков с большей оптической плотностью (рибосомы, нуклеоид). Специальные приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.

Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изо­бражения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении ко­ротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с "сухой" или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цвет­ное изображение, обнаружить малое количество микробов, изучить их структуру и химический со­став, использовать метод иммунофлюоресценции.

Электронный микроскоп

Этот прибор отличается от световых микроскопов значительно большей разрешающей спо­собностью (около 0,001 мкм) за счет использования вместо света пучка электронов, а вместо стек­лянных оптических - электромагнитных линз. В электронном микроскопе изучают вирусы, ультраструктуру убитых макроорганизмов.

Приготовление препарата для микроскопического исследования

Окраска по Граму.

1 этап - приготовление мазка.

Предметное стекло обжигают в пламени газовой горелки. Восковым карандашом отмечают пределы будущего мазка в виде окружности диаметром 1-2 см. и кладут стекло на стол. Прокален­ной петлёй наносят в середину кружка небольшую каплю стерильного изотонического раствора хлорида натрия (ИХН). Затем в эту каплю вносят небольшое количество культуры бактерий, тща­тельно эмульгируют и распределяют тонким слоем в пределах кружка. Мазки из бульонных куль­тур готовят без предварительного нанесения ИХН.

2 этап - высушивание.

Стекло оставляют на воздухе до исчезновения влаги.

3 этап - фиксация.

Фиксацию проводят для того, чтобы убить микробы, прикрепить их к стеклу, повысить их восприимчивость к красителям. Для фиксации предметное стекло (мазком вверх) трижды накла­дывают на пламя горелки на 2-3 секунды с интервалом 4-6 секунд. Мазки из гноя, крови, мокроты, отечной жидкости фиксируют погружением в фиксирующие жидкости (ацетон, смесь Никифоро­ва). Такая фиксация позволяет избежать грубых деформаций объекта исследования.

4 этап - окраска.

Различают простые и сложные (дифференцирующие) способы окраски. Простые способы по­зволяют судить о величине, форме, локализации и взаимном расположении клеток. Сложные спо­собы позволяют установить структуру микробов и часто их неодинаковое отношение к красите­лям. Примером простых способов может служить окраска фуксином (1-2 минуты), метиленовым синим или кристаллвиолетом (3-5 минут), а сложных - окраска по Граму, Романовскому-Гимзе, Циль-Нильсену.

Дифференцирующий метод Грача

После окраски этим методом одни бактерии, окрашиваются в темно-фиолетовый цвет (грамположительные, Гр+). другие - в бордово-красный (грамотрицательные, Гр-). Сущность этого способа окраски состоит в том, что Гр+ бактерии прочно фиксируют комплекс из генцианвиолета и йода, не обесцвечиваясь этанолом. Гр- бактерии после обесцвечивания докрашивают фуксином.

Этапы окраски по Грамму

Этап окраски

Гр + бактерии

Гр - бактерии

Генцианвиолет (2 мин.)

фиолетовый

фиолетовый

Раствор Люголя (1 мин.) - закрепление окраски

фиолетовый

фиолетовый

Этанол + йод (30 сек.) - избират. обесцвечивание Гр- бактерий

фиолетовый

обесцвечивание

Фуксин (1 мин.), докрашивание Гр- бактерий

фиолетовый

бордовый

Промывание водой

Основные формы бактерий

Шаровидные

Палочковидные

микрококки (одиночные)

собственно бактерии

спириллы

диплококки (пары)

спорообразующие

спирохеты

стрептококки (цепочки)

(бациллы, клостридии)

кампилобактеры

тетракокки (4 клетки)

изогнутые палочки (вибрионы)

сарцины (тюки, пакеты)

стафилококки (гроздья)